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ABSTRACT 

Analysis of atmospheric motion over obstacles on plane surfaces 

is carried out in the present study to compute simulated wind fields 

over terrain features. Emphasis is on a semielliptical, two-dimensional 

geometry. Numerical simulation of flow over rectangular geometries is 

also discussed. The numerical procedure utilizes a two-equation turbu- 

lence model/and the selection of the necessary constant coefficients in 

the model is considered an important part of the present study. 

In the present approach the partial differential equations for 

the vorticity, stream function, turbulence kinetic energy, and turbu- 

lence length scale are solved by a finite-difference technique. The 

numerical solutions have been compared with available experimental data; 

agreement is good. 

It is found that the mechanism of flow separation induced by a 

semiellipse is the same as in the case of flow over a gradually sloping 

surface for which the flow separation is caused by the interaction 

between the viscous force, the pressure force, and the turbulence level. 

For flow over bluff bodies, e.g., solid fences, a downstream 

recirculation bubble is created due to the inability of the flow to 

negotiate with the abrupt change of the surface shape. Increasing the 

aspect ratio and/or increasing the turbulence level results in flow 

reattachment close behind the obstacle. 
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1.0 INTRODUCTION 

Analysis of atmospheric motion over obstacles on plane surfaces 

is carried out in the present study to compute simulated wind fields 

over terrain features. Emphasis is on a semielliptical, two-dimensional 

geometry. Numerical simulation of flow over rectangular geometries is 

also discussed. The numerical procedure utilizes a two-equation turbu- 

lence model and the selection of the necessary constant coefficients in 

the model is considered an important part of the present study. 

Although the terrain features analyzed are highly idealized 

geometries which are not exactly duplicated by natural terrain, the 

results present are sufficiently representative of the real world to 

provide insight into the various hazards which are associated with 

aircraft flight in the vicinity of both natural and man-made objects. 

Controlled flight over terrain, such as landing off the runway environ- 

ment or flying over rising terrain, continues to be a safety issue. 

In recent accidents where terrain was a major factor, the air traffic 

control system on the aircraft was equipped with the capabilities 

that should have prevented the accident. This suggests that there 

were certain unknown factors which may include complex and unexpected 

wind patterns which for this safety issue need re-examination. 

Moreover, operation of low-speed helicopters and V/STOL aircraft in 

large metropolitan areas is also affected by zones of recirculating 

wind fields, regions of large velocity fluctuations, and fields of 

vorticity induced by the atmospheric motion near buildings. 
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These complex wind fields can be extremely hazardous during landing and 

takeoff. 

There are many other technologicaldevelopments for which 

analytical solutions of flow over terrain features have practical appli- 

cations. The dispersion of air pollution is significantly influenced by 

atmospheric motion. In complex terrain, the movement and deposition of 

the pollutant can be significantly altered by a hill or building in the 

vicinity of the stack release. The siting of wind turbine generators 

requires knowledge of regions of high wind speed and avoidance of 

regions where recirculation or highly turbulent flow may occur. Addi- 

tionally, the wind load on structures and wind erosion can be increased 

or decreased by the wind characteristics in the vicinity of surface 

irregu larities. These fields of technology also require an understand 

of the atmospheric flow properties about surface obstacles. 

It is well known that surface wind motion is markedly affected 

by the abrupt change of terrain features Cl].' The phenomena of flow 

acceleration, of flow separation, and of augmented turbulence in the 

ing 

wind field are observed effects. The effect of shear in the approaching 

flow and the strong pressure gradients near the barriers create zones 

of recirculation both upstream and downstream in the vicinity of the 

obstacle. High turbulence is generated in the shear layer bordering the 

recirculation regions due to the interaction between the turbulence 

stresses and the deformation of the mean flow field. Momentum in the 

shear layer diffuses into the wake and into the quasi-potential flow 

1 Numbers in brackets refer to similarly numbered references in 
the Bibliography. 
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outside the wake, setting the wake fluid into motion and smoothing out 

the sharp velocity discontinuities. Downstream of the obstacles, the 

diffusion of momentum gradually thickens the shear layer until the inner 

flow is blended with the outer flow, forming a new boundary layer. 

The nature of these flow fields has been studied experimentally 

as well as analytically. Reported results of some of these studies are 

reviewed in Section 2.0. Due to the complexity of the flow characteris- 

tics near the obstacles, it is necessary to solve the complete equations 

of motion if a realistic recirculation flow field is to be computed. 

Practical methods, however, for solving such equations require the use 

of numerical modeling techniques. 

The numerical procedure employed in this paper is an elliptical 

finite-difference algorithm initially developed by Gosman, et al. [2]. 

The Navier-Stokes equations have been expressed in terms of stream func- 

tion and vorticity. In order to close the governing equations, the 

Reynolds shear stresses appearing in the time-averaged equations of 

motion are expressed by the product of a scalar eddy viscosity and a 

strain rate. The eddy viscosity is expressed as a function of the turbu- 

lence kinetic energy and the turbulence length scale. These quantities 

are determined, respectively, from two corresponding transport equations 

(two-equation turbulence model [3]). The computation of turbulent flows 

based on current turbulence models in all cases requires the determina- 

tion of one or more constant coefficients. One goal of this study is to 

derive the relationships of these constants from the knowledge of turbu- 

lence characteristics available at the present time. Details of the 

turbulence model employed in this study are discussed in Section 3.0. 
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Solving partial differential equations by numerical techniques 

requires accurate numerical presentation of boundary conditions. When 

the boundary is coincident with a coordinate line, the finite-difference 

expression at and adjacent to the boundary can be applied at grid 

points constructed on the coordinates without the need of interpolation 

between grid points. In this study, the governing differential equa- 

tions are written in an orthogonal curvilinear coordinate system. The 

curved coordinate surface can then be fit to most terrain shapes of 

interest. Although this increases the size of the governing equations 

slightly, little additional complication is introduced into the calcula- 

tion procedure. The governing equations as well as the coordinate system 

used in this study are described in Section 4.0. The numerical proce- 

dures and the imposed boundary conditions are given in Section 5.0. 

The computation has been carried out for atmospheric flow over 

two-dimensional semiellipses, due to the resemblance of their geometries 

to the shapes of hills. An analysis of the effect of the geometry of 

the obstacles on the wind field is carried out in the present study by 

varying the aspect ratio of the semiellipse. The atmospheric flow is 

considered neutrally stable. The concept of a neutrally stable atmo- 

sphere is meaningful in strong wind conditions [1,4], which is of primary 

importance in this study. Good agreement between the numerical predic- 

tions and the experimental data obtained from both atmospheric boundary 

layer wind tunnels [5,6,7] and full-scale field measurements [8,9] is 

shownin Section 6.0. The comparisons are carried out for flows over 

solid fences, rectangular escarpments, in addition to the 

case of flow over semiell ies. 

blocks and 

iptical bod 
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Parameters influencing the flow field in the vicinity of surface 

obstacles are also discussed in Section 6.0. It is found that the 

primary flow parameters affecting the flow field are surface roughness 

scale, the shape of the obstacles as well as the undisturbed upstream 

turbulence level. Increasing the scale length of the surface roughness 

results in reduced wind speed in the lower layer of the atmosphere due 

to the increase in surface frictional drag. Thus, the streamline is dis- 

placed to a greater height when the flow passes over the obstacle with 

larger surface roughness. For the flow conditions investigated in the 

present study, flow separation is not obtained for flow over semiellipses 

when the molecular Reynolds number, Re, is larger than 105. Conditions 

with Re = 100, however, show that separated flow is induced by semi- 

elliptical obstacles. The mechanism of flow separation induced by a 

semiellipse is the same as in the case of flow over a gradually slop- 

ing surface for which the flow separation is caused by the interaction 

between the viscous force, the pressure force, and the turbulence level. 

For flow over bluff bodies, e.g., solid fences and rectangular blocks, 

a large downstream recirculation bubble is created due to the inability 

of the flow to negotiate with the abrupt change of the surface shape. 

It is found that the aspect ratio of the block and the turbulence level 

of the approaching flow cause significant effect on the size of the 

downstream recirculating flow region. Increasing the aspect ratio 

and/or increasing the turbulence level result in flow reattachment 

close behind the obstacle. Details of flow separation for semi- 

ellipses as well as for bluff bodies are discussed in Section 6.5. 
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2.0 REVIEW OF PREVIOUS WORKS 

The purpose of this section is to review the existing theoret- 

ical analyses and experimental results concerning the aerodynamics of 

surface obstructions in turbulent flow fields. Frost [lO].has compiled 

an extensive survey of flow properties around man-made obstacles to the 

wind. The obstacle exerts a drag force on the wind field and distorts 

the flow approaching and passing over it. Recirculation regions are 

created due to the strong pressure gradients near the obstacle. The 

separation and reattachment points in two-dimensional laminar flow fields 

correspond to the location where the normal velocity gradient.is zero; 

thus the wall shear is zero. In a turbulent flow field, this is also 

assumed to be true in terms of the ensemble time-averaged quantities [ll]. 

Various approaches have been used to theoretically describe 

certain features of turbulent flow over barriers. Tani [12] used a 

diffusion equation to investigate the velocity distributions behind a 

permeable fence. Velocities in the vicinity of the fence were not 

accurately predicted. Plate [13] and Chang [14] indicate that the 

velocity distributions in the shear layer bordering the recirculation 

bubble behind an obstacle agree with prediction from mixing-layer 

theory. No flow separation, however, is taken into account. The 

agreement may be due to the arbitrary adjustment of coefficients used 

in the theory. 

Counihan, et al. [15] apply a small perturbation technique to 

study flow over a low block. Their conclusion that similarity prevails 
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and that the velocity deficit behind the block correlates with a single 

curve is also supported by their experimental work. Some evidence [5], 

however, is given that such similarity in general may not exist. It is 

unlikely that details of the flow properties in the recirculation 

regions near the barrier can be accurately predicted by using small 

perturbation techniques. 

Several investigators , e.g., Taylor [16], Jackson and Hunt [17], 

and Deaves [18], are studying turbulent flow over gently rolling, low 

hills. The application of their solution to large or steep hills must 

be treated with caution. Frost, et al. [19] extended a turbulent boundary- 

layer theory to approximate the atmospheric motion over semielliptical 

hills. The Reynolds stresses are assumed to be important only close to 

the ground, and the pressure distributions driving the boundary layer 

are estimated from inviscid flow theory. This assumption is supported 

by the work of Jackson and Hunt [17] for flow over low hills. 

There has been a fair amount of work recently on the problem 

of flow over circular or elliptical cylinders , most of which assumes low 

Reynolds number flow, e.g., Lin and Lee [20] and Haussling [21], or low 

turbulence high Reynolds number flow, e.g., Given, et al. [22]. None of 

these studies are easily extended to the analysis of turbulent flow 

over barriers. 

At present, most understanding of turbulent flow about surface 

obstructions is obtained from empirical observations. Frost and Shieh 

Cl] have made an extensive survey of the available literature. The 

following summarizes their survey. 
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The presence of a bluff body in the flow field retards the 

approaching wind and creates a separation bubble in front of the 

obstacle. The pressure on the front face of the barrier is strong due 

to the conservation of energy. Outside the upstream separation bubble 

these strong pressure gradients displace the flow and accelerate it 

as it passes over the obstacle. A lee separation bubble is created 

if the flow cannot negotiate the change in slope of the barrier. Mass 

flow into and out of the recirculation zone is conserved. At the 

reattachment point the flow splits, part flowing into the bubble and 

part flowing downstream. An equal amount of mass is in turn entrained 

into the free stream from the bubble through the turbulent transport 

processes in the shear layer bordering the recirculation zone [23]. 

Downstream of the reattachment pojnt, a new boundary layer develops. 

The retarded wind profile readjusts to the local surface conditions, 

thus recovering to a new, fully developed profile at a distance far 

downstream. The behavior of this profile has been studied with 

boundary-layer theory [24]. 

The flow properties near an obstacle depend on the geometry of 

the obstacle, the local surface conditions, and the nature of the 

upstream wind. Behind the obstacle, a closed recirculating flow region 

(recirculation bubble) bounded by a stagnation streamline is generally 

accepted as a description of the separation zone in two-dimensional 

flow. The concept of a closed recirculation bubble can also be 

applied to the case of thick boundary layers, e.g., atmospheric 

boundary layer, if the turbulent transport process is more dominant 

than the mean convective transport process [25]. Strong turbulence 
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in the undisturbed flow causes a smaller.recirculation zone on the lee 

side of most obstacles [26]. 

One of the characteristics of the wake generated by an obstacle 

is the velocity deficit in the wake. The decay rate of the mean 

velocity deficit is independent of the obstacle size, but the magnitude 

of the disturbance is greater for larger obstacles; hence the wake 

persists farther downstream [ll]. 

The shape of a barrier has a definite effect on the lee side 

velocity distributions. A solid vertical sharp-edged fence generally 

creates a stronger disturbance than a porous fence, although the dis- 

turbance may be carried farther downstream behind a porous fence. 

Acceleration of the flow occurs in a region located a distance two to 

three fence heights downstream and slightly above the lee side recir- 

culation bubble. Also, large reductions in velocity occur close to the 

ground immediately behind the fence for solid vertical plate fences. 

Increasing the permeability of the fence causes less reduction of the 

flow behind the fence as well as weaker wind speed in the region of 

flow acceleration over the bubble. The area of reduced wind speed 

behind a porous fence persists greater distances downstream due to more 

momentum being convected into the leeward area through the fence 

openings. The windward flow patterns, however, are insignificantly 

affected by the barrier porosity. 

The maximum wind acceleration expressed in terms of the ratio 

of the local wind speed relative to the undisturbed value measured at 

the same height above the local surface occurs at the crest of a 

surface feature in the absence of flow separation [7]. When flow 
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separation occurs, the location of the maximum speed lies a small dis- 

tance downstream of the barrier and slightly above the separation region, 

depending on the barrier shape, the local surface conditions and the 

turbulence of the approaching flow. 

When the wind approaches a three-dimensional feature, flow 

acceleration occurs not only on top of the feature but also in regions 

near the sides. In a stably stratified atmosphere, the wind tends to 

pass by an obstacle rather than passing over it. Due to this effect, 

the velocity on top of the obstacle is significantly reduced for flow 

over terrain features with small aspect ratios. However, for flow over 

a long ridge the velocity at the center portion of the ridge is not 

significantly affected by atmospheric stratifications due to quasi- 

two-dimensional flow conditions generally prevalent at that portion 

[7]. Additionally, the flow separation point is observed to move down- 

wind under stable conditions [l]. 

High turbulence generally occurs in a shear layer originating 

from the sharp edge of a bluff body. This high turbulence diffuses 

vertically as flow is convected downstream, thus thickening the shear 

layer. The velocity fluctuation in the streamwise direction is not as 

sensitive to the barrier shapes as is the mean velocity [27]. High 

turbulence intensities, because of their definition, occur in regions 

of low wind speed, normally lying close to the rear face of an obstacle. 

Absolute turbulence, however, is generally higher in the regions of high 

wind speed. In the center of a long fence, where quasi-two-dimensional 

conditions are achieved, the streamwise fluctuation decreases with 

the increasing angle between the wind direction and the fence. 
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In general, the magnitudes of the vertical fluctuations are as large 

as the lateral fluctuations 1271. 
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3.0 TURBULENCE MODELS 

3.1 Mean Flow Equations 

In the study of atmospheric flow over surface obstacles, the 

flow associated with separation and reattachment is so complicated that 

the general equations of fluid motion, the Navier-Stokes equations, 

must be solved if realistic results are to be obtained. Atmospheric 

flows are generally treated as incompressible turbulent flow, i.e., the 

fluctuation of fluid density is negligible in comparison with the mean 

density in the statistical steady state. This is especially true when 

the atmosphere is neutrally stable. Based on the assumption of 

incompressible flow, the mean velocity and pressure are governed by 

the equations: 

Continuity equation: 

avi 
-= 
aXi 

0 

Momentum equation: 

(3.1) 

(3.2) 

where gi is the external force acting on the fluid element in the i 

direction and v is-the kinematic viscosity of the fluid. 
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For a stable or an unstable atmosphere where thermal effects are sig- 

nificant, the influence of density variations due to temperature changes 

is often approximated with the Boussinesq approximation. The density 

effect thus appears only in the force term of Equation 3.2. The 

temperature distribution is then governed by a scalar transport equation 

for turbulent flow [28]: 

Scalar equation: 

aF+v aF=lL(-pq+S 
at j axj P axj i F (3.3) 

where F is a scalar function, e.g., temperature; f is the fluctuation 

component of F; and SF is a volumetric source term. Since the effect 

of heat transfer is negligible if the wind is strong [4], which is 

assumed in this study, the thermal effects on the flow are neglected, 

and therefore, the governing equations in this study are Equation 3,l 

3.2. The external force term of Equation 3.2 is neglected due to its 

small effect compared with the shear stresses. 

3.2 Closure Problem 

The main problem in solving Equations 3.1 and 3.2 and thus cal- 

culating turbulent flows is the determination of the Reynolds stresses, 

-pv.v.. 1 J One can derive an exact transport equation for the Reynolds 

stresses from the Navier-Stokes equations. This derivation, however, 

simply introduces a third-order correlation term, v v v i j k, [28], which 

still does not permit the system of equations to be closed. Continuing 
13 



the process by deriving exact equations for higher order velocity 

correlations results in still h,igher order correlations, and thus the 

set of equations can be closed. Thus, at some point a turbulence model 

must be introduced which approximates the turbulent. correlations at 

some order in the hierarchy as functions of the lower order correlations 

and/or mean flow quantities. Turbulence is thus simulated by a turbu- 

lence model ranging from a simple algebraic model of mixing length to a 

more complicated differential transport equation model for the higher 

order correlations [3]. The additional equations, differential and/or 

algebraic equations, used for turbulence modeling together with Equations 

3.1 and 3.2 form a closed set of equations. The turbulence model used 

in this study is described in the following. 

3.3 Concept of Eddy Viscosity 

The eddy viscosity concept of Boussinesq [23] is adapted to 

express the Reynolds stresses as: 

av. av. 
-“i 2 = Pvt axj I 1 -+$ 

i 
- ; Kgij (3.4) 

where 6 ij is the Kronecker delta (6ij = 1 if i = j, otherwise 6ij = 0), 

and K is the kinetic energy of turbulence, 1/2(vivi). The eddy vis- 

cosity, vt, used in Equation 3.4 is based on the assumption of an 

analogy between momentum transport by turbulence and momentum transport 

by molecular motion. Although this concept has frequently been criti- 

cized as physically unsound, it is found to work well in several flows 

L-291. 
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The concept of eddy viscosity has been used in isotropic turbu- 

lent flows by assuming a scalar quantity for vt. For nonisotropic 

turbulence fields, different eddy viscosities are sometimes used for 

turbulent transport of momentum in different directions [29]. In certain 

flows, e.g., wall jets and asymmetric wall shear layers, negative 

values of v+, occur where the Reynolds stresses have the opposite sign 

to that of the velocity gradients (see Equation 3.4). This, of course, 

is not physically meaningful. In most cases, however, the regions with 

negative eddy viscosity are small, and therefore the error induced in 

those areas is of little practical importance [3]. The application of 

Equation 3.4, however, simply shifts the requirement of Reynolds 

stress modeling to the problem of eddy viscosity modeling. 

To overcome this problem, vt is expressed as being proportional 

to a velocity scale, &, and a length scale, L, characterizing the 

turbulent motions. Prandtl and Kolmogorov [3] propose: 

vt = CJi?L (3.5) 

where CU is a constant. The kinetic energy of turbulence, K, and its 

length scale, L, are computed from transport equations. This model, 

called a two-equation model, is employed in this study and is discussed 

in the next section. 

3.4 The Two-Equation Models --- -- 

Launder and Spalding [3] indicate that a variable A constructed 

by any combination of K and L, i.e., A = KnLm, where m and n are real 
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numbers, can be used in the transport equations for the two-equation 

models. Rodi and Karlsruhe [29], however, suggests that a transport 

equation for L should not be used due to the difficulties associated 

with deriving a generally valid formula. References [3,30,31] counter 

this and indicate that a common form for the L transport equation does 

exist. A transport equation for L having a general form like Equation 

3.3 has been used in References [2,11,32,33]. Evidence that realistic 

results can be achieved by using a K-L model for complicated separating 

and reattaching flow phenomena is reported in [11,32]. One subject of 

this study is to demonstrate the validity of the K-L model for calcul- 

ating turbulent recirculating flows. 

Forms of the two-equation model other than that used here are 

reported [3]. A common characteristic of all two-equation models is 

that a set of constant coefficients which appears in the transport equa- 

tions must be determined empirically or by inductive reasoning. One 

semi-empirical procedure for determining the constants assumed the 

turbulence is always in local equilibrium [3,32]. This approach, how- 

ever, can break down in regions where the turbulence production rate 

dominates the dissipation rate. This study proposes an alternate 

method to determine these constants based on presently available 

knowledge of turbulent motions. This method is discussed in detail 

in Section 3.6. 

3.5 K-L Two-Equation Model 

Derivations for the transport equation for K and for L are given 

in Hinze [28] and Mellor and Herring [30]. A brief description of their 
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development is given here. In the flow field, the convective and diffu- 

sive transport of turbulence, i.e., the history of the turbulence, is 

accounted for by solving two differential transport equations. These 

are the transport equations for turbulence velocity scale and for 

turbulence length scale. The physically most meaningful velocity scale 

is A, where the turbulence kinetic energy is defined as half of the 

sum of the mean square values of the velocity fluctuation components, 

(1/2)ViVi. The transport equation for K can be derived from the Navier- 

Stokes equations [28]: 

s+v ale=-L 
at i axi axi vi p --r--I 

r+K - v.v +$+v*~ 

L . 
I II III 

(3.6) 

I = DK 3 Diffusion 

II = PK Z Production 

III = Viscous transport 

IV = cK - Dissipation 

The viscous transport term in Fquation 3.6 can be written as 

a2 K-+ ax ax V.V. 
i j ‘J 

1 
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since the terms 

av. av. 
ax: f 

a2v 
and v. j 

1 aXiaX. 
J 

are zero for incompressible fluid. Since the viscous term is generally 

small except when spatial gradients of the Reynolds stress components 

are extremely large, it is generally neglected. The diffusion term in 

Equation 3.6 resulting from the interacting of velocity and pressure 

fluctuations is assumed to be subject to gradient diffusion. The 

diffusion term is then written 

DK = + (3.7) 

where the Schmidt number o K is a constant which is discussed in 

Section 3.6. Since the energy cascade process is independent of 

the molecular viscosity except at the final stage where the turbulence 

kinetic energy is converted into heat by viscous dissipation, the 

dissipated turbulence energy is modeled by 

= -c 
cK D 

K3qy (3-B) 

where CD is a constant which is discussed in Section 3.6 . Equation 

3.8 involves Kolmogorov's assumption [31] that the dissipation rate 

of K is determined by the energy-containing motion at high Reynolds 

number. The length scale, L, characterizes the size of the large, 

energy-containing eddies of the turbulence field. 
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The K equation based on the above assumptions is thus modeled as: 

(3.9) 

The length scale characterizing the size of energy-containing 

eddies, in turn, is assumed to be subject to transport processes and is 

also determined from a differential transport equation. As mentioned 

in the previous section, the L equation has the general form of equation 

3.3. The rate of change of L is balanced by the convective transport, 

the diffusive transport, DL, and the production and dissipation rate of 

L in the energy cascade process, i.e., PL and cL, respectively, hence 

aL g+v.-= 
J 2x-j 

DL + PL + ~~ (3.10) 

It is assumed that the diffusive transport of L is also gradient-driven. 

The DL term is therefore modeled as 

vt aL DLL-$ -- 
j 1 I OL aXj 

(3.11) 

where aL is a constant which will be discussed in Section 3.6. 

Considering that increasing the turbulence kinetic energy dissipation 

increases the fatality rate for small eddies and thus effectively 

increases the eddy size, the production term for L, PL, should be 

related to the dissipation of turbulence kinetic and some characteristic 

time scale. Hence, it is argued that 

19 



L 
'L a cK?T 

which reduces to 

pL 
= c,/K (3.12) 

where CE is a constant which will be discussed in Section 3.6. 

The vortex stretching connected with the energy cascade reduces the 

eddy size; thus, the rate of dissipation of L, Ed, is subject 

to the interaction of the mean motion and the turbulence fluctua- 

tions. 

avi 
EL = - 'R vt axj 

I -1 
L K-l (3.13) 

where CR is a constant which will be discussed in Section 3.6. 

With Equation 3.5 and Equations 3.11 through 3.13, Equation 3.10 

becomes 

aL a vt al. s+v.-=- --- 
J aXj aXj aL aXj 

The length scale equation, Equation 3.14, traces the historical develop- 

ment of the length scale at a given location and therefore is strongly 

dependent on the initial value of L. 

Both Equations 3.9 and 3.14 involve several constants which must 

be determined before these equations can be solved. The determination 

of these constants is discussed in the next section. 
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3.6 Constants of the K-L Model 

The K-L model described in the previous section contains six 

coefficients. They are oK, oL, C , CD, CE and CR. Conceptually, these 
?J 

coefficients are functions of dimensionless parameters, e.g., Reynolds 

number, which govern the motion of the flow [2]. In high Reynolds 

number flows, however, the coefficients are generally treated as con- 

stants. For fully developed turbulent flows, the Schmidt numbers aK 

and oL used in Equations 3.9 and 3.14, respectively, are generally 

assumed to be of the order of unity [2]. 

OK = 1.0 

cL = 1.0 (3.15) 

Indirect support of this assumption is given by Reynolds [34], who 

shows that the ratio of the eddy viscosity to the eddy diffusivities 

of enthalpy and of other properties such as fluid contaminants is close 

to unity for shear flows. 

In the analysis of turbulent flows using two-equations models, 

determination of the constants CU, CD, CE and CR depends either on 

experiment and/or on an exact analysis of some simple flow. Launder and 

Spalding [3] proposed a wall region approach in which the turbulence 

convection and diffusion are negligible. They analytically determine 

the constant coefficients used in their two-equation model in this 

region. Frost, et al. [32] also used this approach in determining the 

coefficient used in their K-L model. Moreover, the Prandtl mixing 
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length, L = KZ~ , was specified as a boundary condition for the transport 

equation of length scale, Equation 3.14. Realistic results are obtained 

by applying this model to calculate atmospheric flow over forward-facing 

!:"steps [32]. For flow over rectangular blocks, the wall region approach 

gives unrealistic.results in both mean wind field and turbulence field 

[ll]. Shieh, et al. [ll] investigated the influence of the coefficients, 

$, CD' CE and CR, on the flow field computed and then proposed 

5 
= 0.416, C,, = 0.416, CR = 1.44 and CE = 0.6 for calculating flows 

over a rectangular block. Realistic results in both mean wind field 

and turbulence field were obtained,[11,26]. However, validation of 

the coefficients proposed by Shieh, et al. [ll] in other flow situa- 

tions requires further investigation. 

In the present study, the constant coefficients Cu, CD, CE and 

CR described in the following are based on an understanding of the 

properties of turbulence as influenced by their transport process. 

Thus the coefficients are expected to have general applicability. The 

coefficients developed in this study are successfully applied to the 

cases of flow over semielliptical obstacles, fences, rectangular blocks 

and escarpments. Good agreement between the numerical solutions 

and the empirical data of both wind tunnel and full-scale field measure- 

ments are obtained. Comparisons of experiments and analyses are shown 

in Section 6.0. The coefficients are developed as follows. 

Taking the ratio of the production terms to the dissipation 

term in Equations 3.9 and 3.14, one obtains 

(3.16) 

22 



(3.17) 

To establish some physical explanation of the relationship between the 

turbulence kinetic energy and the turbulence length scale, one can 

argue that the growth of the turbulence length scale is a result of the 

dissipation of energy, which creates the biggest fatality rate for 

small eddies. Thus, when dissipation exceeds production, the length 

scale, which is .taken to represent some effective mean of the collection 

of eddy sizes , will increase with the depletion of the smaller eddies. 

The reduction in length scale, in turn, may be thought of as being 

caused by the tendency of shear stress to rupture the larger eddies. 

Therefore, when the production of turbulence kinetic energy exceeds 

dissipation, the length scale is expected to decrease, and when dissipa- 

tion of turbulence kinetic energy exceeds production the length scale 

is expected to grow. With this in mind it is proposed that 

which gives the relationship 

pK pL - cE -10 -.---- 
cK cL 'DCR ' 

(3.18) 

This assumption is obviously valid for the local equilibrium case, i.e., 

PK : cK and PL q Ed. However, it is not restricted to only equilibrium 

flows'. 
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Due to the interaction between the mean motion and the turbulent 

motion, energy is extracted from the mean flow and converted into heat. 

The local production of turbulence energy, however, is not always 

balanced by the local viscous dissipation; thus the turbulence does not 

necessarily gain energy from the mean flow at the same rate as it loses 

energy through viscous dissipation. 

Conceptually, the ratio (CJC,) appearing in Equation 3.16 can 

be determined from the ratio PK/EK and the local conditions of the 

turbulence and of the mean flow. Rodi [29] proposed an equation for 

evaluating the effect of the PK/EK ratio on the coefficients used in 

a K-eK model. His coefficients vary significantly with the distortion 

rate of turbulence. However, an asymptotic constant value of Cp is 

achieved if PK/~K > 1.0. The distributions of K and L are shown [ll] 

to be strongly dependent on the ratios Cp/CD and CE/CuCR, respectively, 

rather than on the magnitude of the constants themselves. However, 

close behind a rectangular block, x = 1.0 H, where the mean flow is 

highly distorted, the distributions of K and L are rather insensitive 

to the value of these ratios (Figure 3.la). On the other hand, in the 

relaxation flow region far downstream from the block, x = 20 H, the 

dependence of K and L on these ratios is seen to be much stronger 

(Figure 3.lb). 

Considering first the region directly behind the block where 

the computation is insensitive to the value of Cll/CD and CE/CpCR, it 

is reasonable to assume that the ratios C /C and C /C C approach 
1-1 D E uR 

unity. Therefore, 
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Figure 3.1 Effect of the ratio of constants on the distribution of 
K/K, and L/L, behind a rectangular block [ll] 
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cp = CD (3.19) 

'E pR =cc (3.20) 

Equations 3.19 and 3.20, of course, are consistent with Equation 3.18. 

Under the above assumptions, the ratio of turbulence production 

rate to turbulence dissipation rate is thus determined solely by the 

local turbulence properties, K and L, and the mean flow deformation; 

see Equations 3.16 and 3.17. 

As the turbulence reestablishes its fully developed state, the 

large eddies will break down through intertial interaction and transfer 

energy to the smaller eddies [28]. As the eddies become smaller, 

energy dissipation due to viscous effects becomes more and more impor- 

tant. Hinze [28] indicates that the turbulence should be characterized 

by the relative rate of change in turbulence energy (DK/Dt)/K. Because 

the rate of change in eddy size DL/Dt is dependent on the local turbu- 

lence properties, this rate of change can be assumed to reflect the 

condition of the local turbulence level, K. A characteristic parameter 

of turbulence can, therefore, be defined as: 

,- = DK/Dt 
f (DL/Dt)2 

(3.21) 

It is noteworthy that the dimension of Tf appears to be the same as that 
. 

of frequency, (time)-'. An eddy frequency associated with vorticity 

fluctuation has long been recognized as an important parameter of 

turbulence [3]. 
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Now consider the range where the turbulence is characterized by 

PK and Ed. The factor Tf can be expressed as 

(3.22) 

Based on the assumption for deriving Equations 3.19 and 3.20, the ratio 

of coefficients is again assumed to approach unity, i.e., 

VR2 = 1.0 (3.23) 

From Equations 3.18, 3.19, 3.20 and 3.23, the relationship between the 

constant coefficients can be written as follows: 

CD = cp 

CR = l/T 

CE = 5 (3.24) 

It is interesting to note that the value of Tf for smaller eddies where 

~~ and PL are dominant becomes 

EK 'D JiT 
Tf='==2 (3.25) 

'L 'E 

which becomes JiTIL when Equation 3.24 is introduced. This is consistent 
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with the assumption throughout this section that the relative turbu- 

lence properties; Equations 3.16, 3.17 and 3.22; are insensitive to 

the ratios of constant coefficients in regions of high rate of turbu- 

lence production. Equations 3.24 and 3.25 imply that this, assumption 

is also valid in regions of high rate of turbulence dissipation. 

The value of CP can be determined from the concept of a constant 

shear layer where the length scale, L, is proportional to the distance 

from the solid wall, i.e., a mixing length hypothesis [ll]. 

cp = m = v*/JiT (3.26) 

where -c is the wall shear stress and V, is the friction velocity. 

Equation 3.26 indicates that the value of CU depends on the flow being 

investigated. 

Gosman, et al. [2] propose that the value of CU can be taken as 

an asymptotic universal constant in high turbulence flows where the 

turbulence Reynolds number Rt = flL/v is large. The value of CU 

determined from Equation 3.26 is taken as the asymptotic value when 

applied to the high turbulence level flows considered in this study. 

For atmospheric flows, CP = 0.416 is proposed [ll]. Substituting 

this value into Equation 3.24, the following constants result. 

CD = Cp = 0.416 

CR = 1.55 

CE = 0.645 (3.27) 
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These values are comparable to the previous,work [11], where 

cp = CD = 0.416, CR = 1.44 and CE = 0.60 where used. 

Launder and Spalding [3] indicate that the ratio V,2/K lies 

between 0.25 and 0.3 in various flows. A wider range, however, is 

reported by Zeman and Tennekes [35] who give 0.226 to 0.34. Field data 

for atmospheric boundary layers generally show smaller values of 

V,2/K as compared with results from laboratory flows. This implies 

that the turbulence generated in the laboratory is smaller than that 

generated in the real world. The ratio Vk2/K for an atmospheric sur- 

face layer is considered to be between 0.17 [36] and 0.26 [35]. The 

numerical values of the constant coefficients of Equation 3.27 corre- 

spond to the case of V,2/K = 0.17. No significant difference *of 

numerical solutions has been observed when V,2/K = 0.25 is employed. 

Consider the decay processes of turbulence behind grids. 

Launder and Spalding [3] propose that the value of CE is half of the 

ratio CD/C,, if the K-L model is employed. With the aid of Equation 

3.19, one can easily show CE is 0.5, which is comparable to the present 

predictions, Equation 3.27. In order to verify the capability of the 

present model for calculating turbulent flows, atmospheric flow 

over surface objects with different geometries, i.e., forward steps, 

rectangular blocks, fences, and semielliptical shaped bodies, is 

investigated. Comparison is made with wind tunnel data and full-scale 

field measurements. Good agreement between the analytical solutions 

and the experimental data is obtained and is shown in Section 6.0. 
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4.0 FUNCTIONAL EQUATIONS IN GENERAL ORTHOGONAL 

CURVILINEAR COORDINATES 

The governing equations of motion for the turbulent atmospheric 

boundary layer under neutral stability conditions, Equations .3.1, 3.2, 

3.9 and 3.14, are formulated in orthogonal curvilinear coordinates in 

this section. Considering a general orthogonal coordinates system; 

u1,u2,u3, as illustrated in Figure 4.1; a differential line element 

in this system, d?, can be related to the Cartesian coordinates; 

X,Y,Z; by 

d< = zx dx + zy dy + ; z dz 

where 6,, zy and zz are unit vectors in the x, y and z directions, 

respectively. 

x 

u2 

f 
-I= 

I u3 
I // 4-- 

ds2 

CQH 

--- 

/' 
.// 

; -: . ds3 

dsl 
u1 

Figure 4.1 An orthogonal curvilinear coordinate system 
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The magnitude of the vector d? can be expressed as 

W2 = (hldul)2 + (h2du2)2 + (h3du3)2 

where the metric coefficients, hi's, are defined by 

hi = [[i&l2 + [$$I2 + [$$I 
l/2 

; i = 1,2,3 

The gradient is defined by 

z z -t 

la 28 - e3 a 
v = ';5- au1 + % au2 + iq au3 

where G G and s3 are the unit vectors in the directions 1, 1' 2 2 and 3, 

respectively. 

4.1 Continuity Equation 

The steady state conservation mass law for incompressible flow 

can be written in vector form as: 

v l Q=O (4.1) 

In the orthogonal curvilinear coordinates system, Equation 4.1 appears 

as 

(h2h3Vl) + -$- (h3hlV2) + x& (hlh2V3) 1 = 0 (4.2) 
2 3 
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4.2 Conservation of Momentum Equations 

According to the D'Alembert principle, the forces acting on a 

control volume are balanced by an inertia force. The inertia force, 

in turn, represents the inflow of momentum to the control volume 

(Newton Law of Motion). 

(4.3) 

The terms involving inertia forces and surface forces must be 

examined in the curvilinear coordinate system. In order to simplify 

the analysis, choose the curvilinear coordinates such that the constant 

u3 surfaces are flat planes (Figure 4.2). Therefore, the fluid motion 

in the directions of u1 and u2 makes no contribution to the inertia 

forces in the direction of u3. The center of curvature, 0, for a 

.I I _' 3 coordinate, described by a position vector F measured from the 

original of the Cartesian coordinates system, lies on a constant u3 

plane. The equations of flow written in the general orthogonal 

coordinates system are still very complex since the trace of the center, 

0 (Figure 4.2), may be described by a very complex function in the 

x-y-z space. In order to reduce the complexity in the computational 

procedure, the coordinate system used in this study is taken as 

axisymmetric (Figure 4.2). This implies that the u3 coordinate repre- 

sents the angle of revolution, y, about the axis of symmetry from a 

given reference plane, e.g., the x-z plane. Referring to Figure 4.3, 

the inertia component of the rate of momentum change per unit volume, 7, 

after neglecting the higher order terms can be expressed as follows: 
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Symmetry 

u3 
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Figure 4.2 An axisymmetric coordinate system 
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Figure 4.3 Velocity vectors of a fluid element shown in a constant 
u3 plane (reference Figure 4.2). 



v2 $ + v2 $f - V3 

da d6 dy \I1 dt + v1 dt - V3 cos B dt 1 
DV3 

- p'3 Dt (4.4) 

where B is the angle between the radius of curvature r2 and the axis of 

symmetry and a = (~/2) - B. Substituting 

vl 
dct 

= rl dt 

V2 = r2 g 

and 

dY 
V3 = r3 dt 

into Equation 4.4, the inertia forces per unit volume, 1, become 

- pz2 
v1 

2 
-- 

rl 

v3 
2 

vlv2 - cos f3 + - 
r3 r2 1 

DV3 
- PZ3 Dt (4.5) 
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Considering the steady state and substituting Equation 4.2 into 

Equation 4.5, the inertia terms in direction 1 are expressed as 

I1 = (h2h3VlVl > + + (hlh3V2Vl) + & (hlh2V3’$> 1 
_ Pv2vl + PV2 

2 
+ 

rl r2 i 1 Pv32 

r3 
sin B (4.6) 

bracket on the right-hand side of Equation 4.6 The terms in the first 

can be written as 

(h2h3VlhlVl) - h2h3VlVl 2 + + (hlh3V2hlVl) 

ahl 
- hlh3V2Vl au2 + au3 

- a (hlh2V3hlVl) - hlh2V3Vl 2 1 
and thus 

'1 = 
(?hlVl)- vlvl ahl v2v1 ahl --_ 

2 au1 --- 
v3vl ahl + v2v1 

hl 
hlh2 au2 hlh3 au3 rl 

(4.7) 

v3 
2 

v2 
2 

- - sin 8 - - 
r3 r2 I 

The radii rl and r2 are given by [2] 

1 1 ahl -=-- 
rl hlh2 au2 

(4.8) 
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1 1 ah2 --= ~- 
r2 hlh2 aul 

(4.9) 

Substituting Equation 4.8 into 4.7 and considering the coordinates 

system in which the metric coefficients hl and h2 are invariant with 

respect to the direction 3 coordinate, Equation 4.7 becomes 

I1 = -p + v- (5hlVl) - q 

1 hl 
2 

ah1 V22 V32 . 
F-r,- r3 'ln B 

- I 

(4.10) 

Expressions for the momentum change in directions 2 and 3 are similar 

to that given by Equation 4.10 and are included later in the complete 

equations of motion. 

The surface forces in Equation 4.3 include contributions from 

the fluid pressure and from the shear stresses due both to molecular 

viscosity and to turbulent fluctuations. The contribution of fluid 

pressure to the force per unit volume, 7 * p' 1s 

F = -VP 
P 

The surface stress 7 can be expressed in general form: 

where 

(4.11) 

?j = ;.T lji ; j = 1,2,3 and i = 1,2,3 
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The component Tji represents the shear stress acting in the ith direc- 

tion on a surface perpendicular to the jth direction. The components 

making up T.. are . . .Jl.., 
expressed as follows [2]: 

. 

Tll 
+ 

T22 C 2 av2 -- 
= 'e h2 au2 

t 
2V2 

-I rl . 

3 
r2 1 

T33 = $ [2(v1 sin 6 + V2 cos B)] 

T23 
v3 = T32 = 'e hi ai, 5 r. Ill -- 

Ti3 = T31 
3 a v3 

I [II -- 
= 'e hl au1 3 

(4.12) 

where II, is-the effective viscosity defined as 

The contributions of the shear stresses to the force on a fluid 

element follow a similar derivation as that for the inertial terms given 

in Equation 4.10. Therefore, the general expression for the momentum 

balance given by Equation 4.3 reduces as follows (see also Reference [2]): 
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Direction 1: . . 

Direction 2: 

ahl l- aul 

iaPo 
+lipq= 

[ 1 pV32 - T33 

r3 
cos f3 

d’22 - T22 ah2 
-[ I 

1 aP 

h2 
2 au2 +Fpy=O 

Direction 3: 

f V- 
1 aP 

3 
+Epiy=O 

(4.14) 

(4.15) 

where g,, g2 and g3 are the components of body force in directions 1, 

2 and 3, respectively. 

4.3 Transport Equations.for Turbulence Kinetic Energy and Length 

Scale 

The governing equations for the kinetic energy, K, and the' 

turbulence length scale, L, can be stated as 
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[Convection] = [Diffusion] + [Sources] + [Dissipation] 

In vector notation, these equations are expressed as follows: (see 

also Equations 3.9 and 3.14) 

$.vK+. (+VK) + P + E K K 
(4.16) 

;+I+. h-p) + PL + EL (4.17) 

The expressions &K and PL were defined previously in Equations 3.8 

and 3.12, respectively. However, the expressions PK and &L in the 

curvilinear coordinates system will be discussed more thoroughly below. 

Gosman, et al. [2] derive the form of PK and cL in a curvilinear 

coordinates system from the following consideration: 

on Moving Fluid 
Mean Motion 

Contribution 

to the Turbulence 

Kinetic Energy 1 
The total shear-work rate per unit volume can be written as 

W 
shear = v l cqv, + T,v, + T3v31 = pe(Wm ,+ Wt) (4.18) 

The shear-work rate is made up of Wm and of Wt, which contribute to the 

kinetic energy of mean motion and turbulence kinetic energy, respec- 

tively. Details of the expressions Wm and Wt are given in Reference [2]. 

Since the present turbulence model is directly concerned with the term 

Wt, it is necessary to write out Wt in the following form [2]: 
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(4.19) 

Referring to Equations 3.9 and 3.14, the production rate of the turbu- 

lence kinetic energy per unit mass of the fluid is therefore 

PK = VtWt = CuJiTL Wt 

and the dissipation rate of L is 

2 

EL 
=-cc Lw 

pRJiT t 

(4.20) 

(527) 

Substituting Equations 3.8, 3.12, 4.20 and 4.27 into the corresponding 

terms of Equations 4.16 and 4.17, respectively, the final form of 

Equations 4.16 and 4.17 appears as follows: 

il l VK=v. f- K3 
(wtVK) + C,$? L Wt - CD L 

,iF l VL = v l (vtVL) - c c 2 w + c,AC 
pRdir lz 

(4.22) 

(4.23) 

where Wt is given in Equation 4.19. 
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4.4 Vorticity and Stream Function Equations 

The procedure for obtaining the velocity components from the 

momentum equations, Equations 4.13 through 4.15, involves the solution 

of the Poisson equation for pressure [37] so that the continuity equa- 

tion, Equation 4.1, is satisfied. For two-dimensional flow situations, 

.a' stream function, 9, and a vorticity, w, are frequently used to reduce 

the number of variables from three (two velocity components and pres- 

sure) to two ($ and W) where no prediction of the pressure distribution 

is needed. The vorticity, Q, and stream function, $, variables are' 

used in this study and are formulated as follows. 

Defining the stream function and vorticity with the relationship 

v d--B- 
1 ph2 au2 

v2 
SI12!4L 

ph, au, 

(4.24) 

(4.25) 

(4.26) 

the corresponding stream function and vorticity equations are [2]: 

v2& = -w (4.27) 

and 
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v l (p&Ll) = 
+-{& b l @,I] - jj& [’ l (h,$)] - +- [?q 

For two-dimensional flows, the vorticity vector, z, is always 

perpendicular to the plane of the'flow and thus behaves as 'a scalar. 

Gosman, et al. [2] show that Equation 4.28 can be written as: 

v l (ph) = v l Cvhedl + SW (4.29) 

where SW is a source term to be discussed later. Using two vector 

operators defined as follows [2]: 

v = -; a+; a 
x az ZK 

(4.30) 

where the unconventional symbol V is used in this report for writing 

convenience; ex and e, are the unit vectors in the direction of the 

horizontal coordinate, x, and of the vertical coordinate, z, respectively. 

The term SW is expressed as [2,ll]: 

SW = 2[v(Zx l $) l v(Zx l v 11,) + v(d, 4 l v(Zz l v l-l,)1 (4.31) 

The expression of Equation of 4.31 in orthogonal curvilinear coor- 

dinates is (see Appendix): 
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S 
hlh2 f = 

av, au, av, au, 
au, au2 + ------- 

av2 au2 av2 au2 
m-p 

au2 au, qau,+-- au2 au, 

(4.32) 

where 

1 ape 1 ape - . 
Y = T$ au, 3 1"2 = 5 au2 

and 8, the angle between g 
X 

and $, isdefined in the Appendix, Figure A.1. 

The above equation implies that if the effective viscosity pe 

is uniformly distributed, i.e., the derivatives of 1-1, with respect to 

both u, and u2 are zero or are negligible compared with the other 

terms in the vorticity transport equation, Equation 4.28, the SW term 

can be wholly omitted from Equation 4.29. 

4.5 Analysis of Flow Parameters 

Since the problem considered here is atmospheric motion over 

bluff bodies, one can choose the characteristic body height, H, and the 

undisturbed upwind velocity at this height, VH, as the characteristic 

length scale and velocity scale, respectively. 

Defining the dimensionless variables 
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UH $=-&- ; iG=r. 
H H 

"K+ ; '=k 

vH 

1-Ie "v=v ; p,=- 
vH PHVH (4.33) 

the resulting dimensionless form of the governing equations (Equations 

4.27, 4.29, 4.22 and 4.23) becomes: 

gJq$zj+$-L$q]=-ii (4.34) 

+ (fi2ijV1) + 
1 

- hlh2 SW = 0 

+ (R2W1 ) + & (R1KJ2) 
1 2 

wed - 
- hlh2 SK = 0 

$- (h2n7,) + & (iil”LV2) 
1 2 

-5&J+-] -$-[i$g] 

- fi1K2 3, = 0 
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Considering that Ge = (6, + u)/pHVH, one can rewrite c, as 

ii, u 
= c "K7/2"L + 1 

Re (4.38) 

where 

PHVH 
Re = T 

It is obvious that for turbulent flows where the Re number is very 

large, Ge reduced to CPR1/2W L and the effect of the molecular viscosity 

on the flow field can be ignored. The flow is thus insensitive to the 

Reynolds number based on molecular viscosity. 

In a neutrally stable 

profile over flat homogeneous 

law [4]: 

where 

atmospheric boundary layer, the wind 

terrain may be described by a logarithm 

(4.39) 

The parameters V, and z. are the friction velocity and surface roughness 

length scale, respectively, and von Karman's constant K is taken as 0.4. 

The friction velocity V, appearing in Equation 4.39 can be thought of 

as a measure of the turbulence level in the approaching flow (see 

Equation 3.26). 
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Examining Equations 4.35 through 4.39 and being cognizant of the 

above argument, the basic parameters involved in low-level atmospheric 

motion, where Coriolis effects are negligible, are found to be i;,, v*, 

and Zo, where jit = c p"L. 
lJ 

The first is a measure of turbulence trans- 

portation due to turbulence fluctuations, whereas the second and third 

characterize the turbulence level in the undisturbed upstream flow. 
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5.0 NUMERICAL ALGORITHM 

The governing equations, Equations 4.34 through 4.37, given 

in Section 4.0, are solved by utilizing the numerical procedure 

developed by Gosman, et al. [2]. An outline of the procedure is 

given in Section 5.1. Theoretically, the procedure can be applied 

to any curvilinear coordinate system, however, a semielliptical 

cylinder on a plane surface, discussed in Section 5.2, is chosen in 

this study. This geometry simulates a hill in natural terrain for 

which parametric variations of the aspect 

The boundary conditions for the dependent 

are given in Section 5.3. In Section 5.4 

results is discussed. 

ratio can be carried out. 

variables 6, $, K and L 

the accuracy of the numerical 

5.1 Derivation of Finite Difference Equations 

Following the method of Gosman, et al. [2], Equations 4.34 

through 4.37 can be written in the general form: 

a[+[$ $1 - ++ +I] - [e[b : &W] + +--Lb 5 +(cefJ 

I advection - u diffusion A 

+ h, h2 d = 0 

LsourceJ 

(5.7) 

where 4 stands for $, & "K or c.‘ The corresponding functional coeffi- 

cients a, b, c and d are listed in Table 5.1. 
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Table 5.1 Coefficient Functions of Equation 5.1 

0 a b C d 

3 0 1 1 4 

ii 1 1 ce --s w 

it 1 % 1 -5, 

'i 1 i$ 1 3, 

The general differential equation, Equation 5.1, is replaced by a finite- 

difference equation in the numerical computation procedure. The finite- 

difference equation is obtained by integrating Equation 5.1 over a 

typical cell appropriate to a central node p surrounded by nodes E, W, N 

and S, Figure 5.1. The resulting finite-difference equation is [2,38]: 

a [ii 1 Ge $$ - Qw 
2e 

I advection 

diffusion 

+ dpb~,)ew(AQ)ns = 0 (5.2) 

L- source - 

where 
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Figure 5.1 Grid arrangement with respect to the central node P 
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Au1 = b,le - (u,)~ ; Au2 = (~~4, - b24 

(As,),~ = (s,)~ - (Sl)w ; (Asp);; = (s~)~‘~'(s~)~ ' ,. 

s, and s2 are new independent variables which are connected to the. 

UT-u2 coordinates by the relations: 

ds, = h,du, ; ds2 = h2du2 '. 
.’ 

,. 

The approximation for the advection terms in Equation 5.2 employs an 

"upwind differencing" technique. This is a one-sided rather than a 

centered-space differencing, where the scheme is backward differencing 

when the velocity is positive and forward differencing when it is 

negative. This formulation of the first-order terms gives greater 

numerical stability than can be obtained with central differences [32]. 

Using the upwind differencing method, the first advection terms is 

approximated by [2]: 

a @E I 
A$ - IAs\ + + A$ + &I 

2 P 2 I 

where A$ = Gne - Gse 

= &E + &, + i& + 5,) 

;ne = ~(GNE + Gp + $N + ;,, 

Thus the value of.$e in Equation-5.2 appears as follows: 

:. I. . . . . . ' . . ,' 

@e =(I~ if A$ > 0 



$e =oE if A?<() 

The term (aq/au2)e has been approximated by 

= c?,, - 3se)/A~2 

The remaining advection terms are obtained similarly and the resulting 

finite form of the advection terms is: 

[Advection] z Apep - 1 Aiei 
i=NSEW 

where 

C 
i=NSEW 

Ai@i = AN+, + AS@S + AEOE + A,$ 

AW = @NWS + 

AS = &SE + 

Ap = AE + AW + AN + AS 

(5.4) 

c The above definition of the symbol i=NSEW is used throughout this study. 

Roache [37] indicates that the application of "upwind differencing" 
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technique may introduce an artificial viscosity. This pseudo viscosity, 

however, can be reduced by decreasing the grid size used in t)he numerical 

programming. The influence of the pseudo viscosity on the flow field is 

discussed in Section 5.3. 

A central-difference method is used to approximate the diffusion 

terms in Equation 5.2. It is assumed that the b's and c's can be 

approximated with a linear variation, i.e., 

be z ;(bE + bp) (5.5) 

(5.5) 

The (A;l)ew and (A;2)ns terms appearing in Equation 5.2 are approximated 

as 

(A:,),, = $,,E -,;,,w) 

and 

(Ai. jns 
l-. 

= ?('2,N 2,s -s ) 

(5.7) 

(5.8) 

respectively. Writing the remaining b's and c's in the forms of Equations 

5.5 through 5.8, the resulting finite-difference form becomes: 

[Diffusion] = 1 Bi(~@)i -Bp(~$)p 
i=NSEW [ 1 

where 
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m .I,, II ,. ,o mm---,..mm.-1 ,,, ,, _ , ,-- . .._ --..-... -- 

. . bE.+ bp ‘2;,N - s2iS 
BE= 

‘. z _ ;‘: , ‘2 ,, ; ,- 
4 w 

. . SljE - s,,p : .,:' ;, .- 1' I' .; : .',- .;,: 1 

., _ 

..d “.-.e. 

bW + bP '2,N - '2,s 
Bw= 4 u _ 

s1,p.- sl,w 

: ‘, 

- .‘s 

bN + bP '1,E - sl,W 
BN= 4 - w 

'2,N - s2,P 

bS + bP '1,E - '1,W Bs= 4 _ - 
s2,p - s2,s 

BP = BE + Bw + BN + BS 

Introducing Equations 5.7 and 5.8 into the source terms, the following 

finite-difference equation is obtained. 

[Source] = f dP($ E - il,w)(s2 N - ;2,s) 
, 3 

(5.10) 

Summarizing, the finite-difference form of Equations 5.4, 5.9 and 5.10 

for integration of Elquation 5.1 is 

+p = 1 Ci@i + D 
i=NSEW 

(5.11) 

where 

Ci = (Ai + Bici)/CAB 

D = -$VP/CAB 
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,- .., _ u 
"p = i(Sl,E - sl,W)(s*,N - S2,S) 

CAB = 1 Ai +, cpBi. 
i=NSEW L 

..- . 

Because of the nonlinear characteristics of the resulting finite- 

difference equation, Equation 5.2 is solved by an iterative 

successive substitution. technique. ' 

5.2 Ell.ip_tical Cylinder Coordinate.System 

The orthogonal.curvilinear coordinates system used in the study 

is an elliptical cylinder system. This choice allows one of the 

coordinate lines to represent the solid boundary of a semiellipt i 

body which in turn is assumed to simulate a hill. 

cal 

Mathematically, a two-dimensional semielliptical surface 3 A-B 

as shown in Figure 5.2(a), can be defined by the following equat i on: 

3 3 
XL+L 1.0 
D* H2 

(5.12) 

where D is one-half the longitudinal length of the semielliptical body 

and H is the body height. In two-dimensional elliptical coordinates 

(u,, 93 Figure 5.2(b), the coordinates x and z can be expressed as 

X= -a cash u2 cos u 1 

z. = a sinh u sin '2, u 1 
(5.13) 

where a is one-half the length between the two focus points of the body; 

u2 1 0 and 0 5 u, I 27. 
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/Outer Boundarv 

wal 

(a) Schematic diagram of the numerical coordinates used 

3ll/4 

= IT 
-x 
2Tr 

(b) Two-dimensional semielliptic coordinate system 

Figure 5.2 The numerical and physical coordinate system for calculating 
the problem of flow over semiellipses 
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From Equations 5.12 and 5.13, it is evident that 

H = a sinh u2 

D = a cash u2 (5.14) 

and therefore, a value [u2], representing the solid ellipse boundary is 

determined by the following equation: 

[up], = coth -1 D TT (5.15) 

From Equations 5.14 and 5.15, the dimensionless form of Equation 5.13 is 

“x= -cash u 2 cos u,/sinh (u2)b 

Z = sinh u2 sin u,/sinh (u2)b (5.16) 

The trace of the curvilinear coordinate surfaces of constant u, and u2, 

respectively, on the x-z plane shown in Figure 5.2(b) are obtained from 

Equation 5.13. They are confocal ellipses and hyperbolas, respectively. 

The dimensionless metric coefficients h, and h2 are as follows: 

hl = gkinh2 u2 + sin2 u, 

ii2 = “h, 

where (see Equation 5.14): 

$ = l/sinh [u2], 
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5.3 Numerical Coordinate.System ,. . . 

The origin of the numerical coordinates is situated at the up-. 

stream corner of the semielliptical body, node A in Figure 5.2(a) with I 

indexing in the positive u, direction and J indexing in the positive u2 

direction. In the iteration process, the field was swept from left to 

right beginning at the outer boundary and proceeding in the decreasing 

J-direction. A total of 2,501 grid points (I x J = 61 x 41) are con- 

structed in the flow field. The variable mesh used is determined by 

the following equation: 

[u,J = (I - 1)1~/60 ; I = 1, 2, 3, l ** 61 

h,1J = b+1J=, + ,i, C1(C2)n-2 ; J = 2, 3, 4, l ** 41 (5.17) 

where 

b21J4 = coth-' ; 

and C 1 and C 2 are constants. A value assigned for Cl, then, represents 

the distance of the first grid point to the obstacle through Equation 

5.16. A value greater than unity assigned for C2, however, is used to 

stretch the grid size and therefore changes the distance of the outer 

boundary from the obstacle. For D/H = 2.0, Equations 5.16 and 5.17 show 

that the outer boundary is a distance of approximately 30 H from the 

obstacle if Cl = 0.025 and C2 = 1.05. The distance becomes 45 H if C2 

is changed from 1.05 to 1.055. The distance from the first grid point 

to the obstacle is approximately 0.05 H in these cases. A distribution 
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of grid points in the "x-2 plane' is shown in Figure 5.3 for the case 

D/H = 2.0, Cl = 0.025 and C2 = 1.05. 

5.4 Boundary Conditions 

The dimensionless form of the boundary conditions is discussed 

in this section. The outer boundary conditions 'are determined from the 

undisturbed flow conditions, whereas the obstacle and the wall boundaries 

are determined from the local equilibrium conditions. 

5.4.1 Outer boundary. It is assumed in the present study 

that the outer boundary, Figure 5.3, is located far away from the semi- 

elliptical body on the half plane so that the flow conditions at the 

outer boundary are not disturbed by the presence of the obstacle in 

the flow field. For atmospheric flow as considered in the study, the 

undisturbed wind velocity profile is the logarithmic velocity profile 

given by Equation 4.39. It is (Equation 4.39): 

where von Karman's constant K is taken as 0.4. In the Cartesian co- 

ordinates system, the undisturbed stream function s(z) is obtained by 

integrating this velocity profile over the height of the solution region. 

(5.18) 
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ol 0 

Figure 5.3 Distribution of grid sizes for D/H = 2.0,. Cl = 0.025, 

c2 = 1.05 



where Zr is the ratio f/Z,. For a grid node, Q, on the outer boundary, 

Figure 5.3, the height, ZQ , can be determined from its coordinates 

[(Ul)Q? (+)Q] by the fOllOWing equations (see Equations 5.13 through 

5.15): 

‘Q = 

sinh(u2)Q sin(u1) 

sinh[coth-' (D/H)] 
(5.19) 

where (~1)~ and (~2)~ are the values of u, and u2 at the position of 

the node Q, respectively. At the node Q the boundary condition of the 

stream function GQ is therefore (see Equations 5.18 and 5.19): 

ijQ = $(T,) = +[[l+?] ,,[, +?] -4 (5.20) 

Similarly, all other boundary conditions of G for the nodes on 

the outer boundary are obtained. This procedure is also used to obtain 

the outer boundary.conditions for w, z and "L, respectively. Thus, only 

the undisturbed conditions for G, Z, and c, respectively, of the 

atmospheric boundary layer written in terms of the Z are presented in 

the following. Equation 5.19 is used to convert (u,,u,) to the (Z,z) 

coordinate system. 

In the undisturbed atmospheric boundary layer, the dimensionless 

vorticity G is written as follows: 

;j(^i) = - g = - 
* 

qy l+$- 
0 
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The boundary condition for the turbulent length.scale is based: :, 

on a mixing-length hypothesis.. In the neighborhood of the wall,.the .. . . 

mixing length is -generally assumed to be linearly.related to the normal 

distance from the surface. For a very rough surface, the mixing length. 

hypothesis does not go to zero but approaches a size on the order of the 

roughness length, Zo. The following relationship is assumed: 

-.d 

L = K(Z + Izo) (5.22) 

The boundary condition for the turbulence kinetic energy, K, is derived 

from the assumption of constant shear layer. In terms of the Prandtl- 

Kolmogorov formula, Equation 3.5, the shear stress, T, of the undisturbed 

atmosphere is written as follows: 

-2 
7 = pv, =CpJiTLB 

?J L I a"z 

Substituting Equations 4.39 and 5.22 into the above equation, the 

following equation is obtained: 

“* 2 “K= c iI u (5.23) 

5.4.2 Wall boundary. The wall boundary is assumed to be a 

solid wall; therefore, no flow passes through it. Thus, the wall boun- 

dary forms a streamline which is assigned the value zero. 

$=O (5.24) 
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Applying-the nonslip conditions at the wall; i.e:, V, = 0; V2 = 0; the 

G at the wall becomes (Equations.4.26 and 4.33): 

In the present study, the wall boundary is constructed by u, = 0, 

ul = IT and u 2 = (u~)~ (see Figure 5.2 and Equation 5.15). 'Considering 

that a~,/au, '= O'along u, = 0 and u, = T, and that aV,/au, = 0 along 

u2 = (u,),, the dimensioriless vorticity along the wall can be written as 

follows: 

if u, = 0 or u 1 =Tr 

wall 

and 

if u2 = b2),, 

wall 

Since the above equations can be written in a general form when the 

velocities V, and V2 are replaced by Equations 4.24 and 4.25, respectively, 

only the expression of wall vorticity along u2 = (u,),, Gw, in terms of 

stream function (see Equation 4.24) is discussed in the following: 

+$ (5.25) 

2 
.'+=('+)b 
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To express iZW in terms of known variables, the stream function around 

a nearby wall point, point NW in Figure 5.2a, is expanded in a Taylor 

series: 

Au2 + ; a2J, 
au22 

(Au~)~ + H.O.T. (5.26) 

w 

The second term on the right-hand side of Equation 5.26 is zero due to 

the nonslip condition. From Equations 5.25 and 5.26, the vorticity at 

node W on the wall boundary; Gw; can be approximated by the following 

equation if the higher order terms of Equation 5.26 are neglected. 

ww =- 
2($,, - 6,) 

fi,(a~,)~ 
(5.27) 

Assuming that the concept of a constant shear layer is applicable in the 

turbulence, i, and its 

'Y cm. 

region very close to the wall; the kinetic energy of 

length scale, I, take the following form, respective 

KG 2 [ 1 
2 

jiK= + 
1-1 

(5.28) 

i = K z. 

5.5 Accuracy of Numerical Solutions 

(5.29) 

The accuracy of numerical solutions is generally affected by the 

imposed outer boundary condition-and the grid sizes used in the solution. 
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Theoretically, the limit of the outer boundary is at infinity. In a 

practical analysis, however, this cannot be imposed; therefore, in this 

study the conditions at infinity are applied at a large distance, zmax, 

from the elliptical body. The value of zmax is determined in such a way 

that further increase in its value does not significantly effect the 

numerical solutions. The value of zmax is determined by numerical experi- 

ment. In the case D/H = 2.0, solutions obtained from zmax = 30 H and 

45 H, respectively, are compared in Figures 5.4 through 5.7. This com- 

parison indicates that the difference between these two solutions is 

small (about 5% of the local value). The solutions for the case D/H = 2.0 

shown in Section 6.0 are therefore computed with zmax = 45 H to assure 

good compliance with the boundary conditions applied at the outer boun- 

dary, Equations 5.18 and 5.21 through 5.23. However, a value of 

Z max = 30 H would provide the necessary accuracy if desired. In the 

present study, the numerical computation for D/H = 1.02 is carried out 

for zmax = 30 H. 

In addition to the outer boundary condition, the grid size used 

in a numerical procedure can significantly affect the accuracy of the 

solutions. Two cases are used to investigate the effect of the distri- 

bution of grid size on the numerical solutions. The first case is 

Cl = 0.05 and C2 = 1.02 in Equation 5.17, and the second case is 

Cl = 0.05 and C2 = 1.05. As mentioned in Section 5.3, the number 

of grid points constructed for numerical computation is 2,501 points 

(I x J = 61 x 41), which yields f,,, = 30 for both cases mentioned 

above. The number of grid points in the wall region of the second case 

is approximately twice the number of the first case. In the region 
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Figure 5.4 Streamline, $, patterns of flow over a semiellipse for D/H = 2.0. 

(below i = 0.6 solutions coincide) 
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Figure 5.5 Distribution of turbulence kinetic energy, K, for D/H = 2.0 
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Figure 5.6 Distributions of turbulence length scale, L, for D/H = 2.0 
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Figure 5.7 Vorticity, w, patterns for flow over a semiellipse for D/H = 2.0 



near the outer boundary, more grid points are constructed for the first 

case than are constructed for the second case. Again, the effect of 

the grid size on the numerical solutions is small for the cases compared, 

Figure 5.8. Based on the above discussion, it was assumed that the grid 

distribution given by Equation 5.17 with Cl = 0.025 and C2 = 1.055 

would provide meaningful results. Therefore, this distribution is used 

throughout the study. The application of Cl = 0.025 and C2 = 1.055 

reduces the grid size to 0.05 H at the wall region and approximately 

7 H at the region near the outer boundary if D/H = 2.0. For D/H = 1.02, 

the grid size at the wall region and at the outer boundary region is 

0.025 H and 5 H, respectively. The distance from the outer boundary to 

the obstacle is approximately 45 H if D/H = 2.0 and is approximately 

30 H if D/H = 1.02. 

As mentioned in Section 5.1, the "upwind differencing" technique 

used in this study causes a pseudo viscosity, the value of which depends 

on the grid size [37]. Since the grid size near the obstacle is very 

small (not greater than 0.05 H), the effect of the pseudo viscosity is 

considered to be small in that region. An analytical method of 

determining the error caused by the pseudo viscosity effect is not 

available for nonlinear equations; the reader must therefore make his 

own judgement of this effect from the grid distribution shown in 

Figure 5.3. From previous experience, the author believes that this 

effect will not cause significant inaccuracies in the results. 

The convergence criteria for the numerical computation is 

max 

(5.30) 
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Figure 5.8 Velocity profiles on top of a semiellipse for 
D/H = 2.0 and I, = 0.005 
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where 0 is the dependent variable at grid point P, and the superscript n 

denotes the nth iteration. Equation 5.30 insures good convergence in 

areas of small $p values. The present study was run on an IBM 370/3031 

computer. Execution of the present computer code requires approximately 

256 K bytes of main storage. Each iteration of the code requires approxi- 

mately 9.5 set on the central processing unit of the IBM 370/3031. The 

computational time required for convergence of the cases run in this 

study is approximately 180 minutes for each case if the undisturbed flow 

conditions, i.e., outer boundary conditions described in Section 5.4 

are the initial conditions. The computation time is reduced to 120 

minutes if the converged solutions of a case are used as the initial 

conditions of other cases. 
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6.0 RESULTS AND DISCUSSION 

The numerical results obtained in this study represent solutions 

of atmospheric flow over a two-dimensional semielliptical body. The 

effects of aspect ratio, of distributions of surface roughness, and of 

molecular Reynolds number are discussed in this section. The numerical 

results are compared with the available experimental data. Since most 

currently available experimental data are for flow over rectangular- 

shaped bodies, i.e., fences, blocks and forwardlfacing steps, numerical 

results computed wi,th the present model in a Cartesian coordinates system 

over these types of geometries are first tested. The agreement between 

experiment and theory is excellent. Since the computation algorithm used 

to compute flow over the semiellipse is the same as that for Cartesian 

coordinates, the present computed results for flow over semiellipses are 

believed to be good even though there is insufficient data available 

for a valid comparison. The flow separation created by a rectangular 

geometry, however, is quite different from separation caused by a 

semiellipse. The differences in the mechanism of flow separation are 

discussed in Section 6.5. 

6.1 Characteristics of Flow About a Two-Dimensional Semielliptical 

Obstacle 

The results discussed in this section are obtained for a semi- 

elliptical body with aspect ratio D/H = 1.02.. The outer boundary is 

situated approximately,'30 H away from the body. The dimensionless sur- 

face roughness scale, 'i. = 0.005, is uniformly distributed along the 
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wall and over the semiellipse. Substituting Z. = 0.005 into Equation 

4.39, the dimensionless friction velocity is obtained as t, = 0.075. 

From Equations 3.27 and 5.23, the undisturbed upstream turbulence 

energy is therefore "K = 0.0325. The molecular Reynolds number, Re, is 

assumed to be large enough so that its effect on the solutions is 

negligible, as discussed in Section 4.5. This assumption is reason- 

able when Re is greater than 105, as found from the present numerical 

study. The effect of Re is discussed later. 

The streamline pattern for Z. = 0.005 and D/H = 1.02 is shown 

in Figure 6.1. The flow is seen to converge as it passes over the 

obstacles. The convergence of the flow causes the wind to gain speed 

in the region above the obstacle, Figure 6.2. The constant velocity 

contours in Figure 6.2 show that the local maximum in velocity occurs 

at 0.1 H above the crest of the body and the local minimum occurs at 

1.0 H. Similar phenomena have been observed in full-scale field 

measurements [9]. More discussion of this phenomenon is given when 

the numerical results are compared with the experimental data in 

Section 6.4. 

Figure 6.2 shows very strong gradients occurring in the area 

close to the surface of the obstacle. This implies that a high produc- 

tion rate of turbulence kinetic energy, I?, occurs there, as discussed 

in Section 3.0. The production rate of "K in that region is stronger 

than its dissipation rate and, therefore, relatively high turbulence 

kinetic energy occurs in this region, as shown in Figure 6.3. Down- 

stream of the obstacle, the region of high turbulence expands grad- 

ually, Figure 6.3, due to the effects of convection and diffusion. A 
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relatively low turbulence area is observed in the region approximately 

1 H to 2 H above the crest, as is expected due to the nearly iniform 

velocity profile, Figure 6.2. In the vicinity of both the upstream 

and the downstream cqrners of the obstacle, the turbulence kinetic 

energy is very small due to the motion of the fluid being restricted 

by the wall. 

The distribution of the turbulence length scale is shown in 

Figure 6.4. This figure indicates that the length scale "L decreases as 

the flow approaches the obstacle. Then i increases rapidly as the flow 

passes over the obstacle. Downstream of the obstacle, the 'L decreases 

again with the exception that "L increases in a region immediately 

behind the obstacle. The rapid increase of E on top of the obstacle 

implies that the length scale cannot be prescribed in that region by 

a mixing length hypothesis. At 0.5 H above the crest, the length scale 

"L is equal to 0.4, which is the same value as "L upwind at 1 H above the 

plane surface. The present results indicate that "L would be under- 

predicted by a mixing length hypothesis in the region above the 

obstacle. 

Constant vorticity contours are shown in Figure 6.5. Very 

strong vorticity is generated on the surface of the obstacle due to the 

nonslip condition at the wall. The distribution of vorticity in the 

flow field is determined by the velocity gradients. Convection and 

diffusion of vorticity are clearly shown in Figure 6.5. 
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6.2 Effect of Aspect Ratio 

The effect of variation in aspect ratio on the flow field for 

a nondimensional surface roughness Z. = 0.005 is shown in Figure 6.6. 

The V/VH isotachs for the aspect ratio D/H = 1.02 and 2.0 are presented. 

One observes that the velocity above the crest of the obstacle increases 

with a decrease in aspect ratio. This effect is very strong in the 

lowest 1 H layer above the crest and is felt even up to 10 H, Figure 

6.7. Reference [19] explains that a stronger favorable pressure gradi- 

ent occurs near the leading edge of a smaller aspect ratio semi- 

elliptical body, thus causing higher wind speeds on top of the body. 

The constant contour lines of the dependent variables 5, G, 

K and ; for D/H = 2.0 were shown in Figures 5.4 through 5.7. Comparing 

these figures with Figures 6.1 and 6.3 through 6.5, one observes that 

the vorticity, G, produced near the surface is significantly affected 

by the aspect ratio. However, the effect on the turbulence kinetic 

energy is small. The reason for this is that by definition the vorticity 

is a direct function of the velocity gradient; however, the local tur- 

bulence kinetic energy, K, is a balance between the diffusion, the pro- 

duction, the dissipation and the convection of K. Therefore, the local 

turbulence kinetic energy is dependent not only on the velocity gradient 

but also on the local turbulence level and the surface roughness. The 

effect of aspect ratio on K is small for the cases compared in the present 

study because the surface roughness has been held constant (20 = 0.005) 

along the wall. Moreover, the undisturbed turbulence kinetic energy also 

remains the same, i.e., ii = 0.0325, for the same surface roughness value. 
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6.3 Effect of Surface Roughness 

The effect of surface roughness on the flow field is described 

in two parts: (1) the effect of the local value of zb assigned to the 

obstacle and (2) the effect of the value of f0 assigned to the upstream 

plane. 

The effect of the local 70 is studied for the aspect ratio 

D/H = 2.0. The value of to used to determine the undisturbed friction 

velocity, V*, Equation 5.14, is 0.005 in this case. The value of "v, is 

0.075, and therefore the undisturbed upstream "K is 0.0325, Equation 5.23. 

Numerical results are obtained for ?b = 0.01 and for z,, = 0.005, where 

Zb is the surface roughness scale of the obstacle. For increasing Zb, 

the velocity decreases in the lower layer directly on top of the 

obstacle, Figure 6.8. The thickness of this layer is approximately 

1 H. The increase of surface roughness causes a larger drag on the 

flow field. This friction drag reduces the wind velocity in the lower 

layer, Figure 6.9, and thus displaces the streamline to a greater 

height, Figure 6.10. Since the kinetic energy lost in the mean wind 

field due to the effect of friction drag is converted into the turbulent 

fluctuations, the turbulence kinetic energy is increased with increasing 

z b, Figure 6.11. 

The flow field about an obstacle is influenced not only by the 

roughness scale on the obstacle but also by its distribution along the 

wall. If the roughness scale is increased from Z. = 0.005 to Z. = 0.01, 

i.e., i, increases from 0.075 to 0.087, the turbulence kinetic energy, 

K, in the upstream undisturbed flow increases from 0.035 to 0.044. 
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The velocity profiles on top of the obstacles, shown in 

Figure 6.8, indicate a slower wind speed in the layer 0.2 H above the 

crest for Z. = 0.01 than for Z. = 0.005. This is obviously a result 

of the larger drag force created by the rougher surface. In the layer 

between 0.2 H and 1.0 H, V increases for larger Z. due tc t+e enhanced 

turbulence mixing process which carries the upper layer fluid elements 

with high momentum into the lower layer. This interaction augments 

the momentum in the lower layer. 

The i? in the flow field inc,reases correspondingly, as one observes 

in Figures 6.11 and 6.12. From Equation 5.18, the maximum value of 

$ assigned at the outer boundary of the computed flow region, i.e., 

the value of s at "z = 45, is 68.4 if Z. = 0.005 and "v, = 0.075, and 

is 76.2 if Z. = 0.01 and t* = 0.087. Therefore, more mass flow is 

brought into the flow region computed for the case of larger Z. and 

thus larger velocity in the flow field is obtained, Figure 6.13. 

Figure 6.14 illustrates that the velocity speed-up ratio, 

defined as the local speed at a height z" above the crest of the obstacle 

divided by the undisturbed speed at the same height above the upstream 

surface, i.e., S = V(r)/V,(Z), increases with increasing Zo. This 

agrees with the results of previous studies [32]. As explained pre- 

viously in Section 6.2, the aspect ratio has a significant influence 

on the speed-up ratio. From the limited cases discussed, the effect 

of the aspect ratio on the speed-up ratio can be seen to exceed the 

effect caused by the change of surface roughness, Figure 6.14. 
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6.4 Verification of Results 

Comparisons of the numerical results with.experimental field 

data and with atmospheric boundary layer wind tunnel data are given 

in this section. Since the flow field is significantly affected by 

the geometry of the obstacle, the surface roughness scale and the 

upstream turbulence level (discussed in Sections 6.1 through 6.3), 

only experimental data obtained under well-defined conditions are 

used for comparison. 

Most data available for comparison are for flow over rectangular 

bluff bodies, i.e., steps, blocks and fences. Limited data are avail- 

able for flow over other geometries. In this section, therefore, 

comparison is first made for the case of flow over rectangular bluff 

bodies. For flow over semielliptical bodies, the numerical solutions 

are compared with the analytical results of Frost, et al. [19]. The 

present solutions are also compared with the results of flow over 

obstacles with geometries similar to semielliptical bodies. These 

cases are the analytical results of flow over a two-dimensional Gaus- 

sian hill [39], the wind tunnel data of flow over two-dimensional 

half- and full-sinusoidal bodies [7], the flow over a three-dimensional 

Gaussian hill [7], and the data of Bradley [9] obtained from field 

studies of flow over a full-scale hill. 

Numerical results for flow over a 90" escarpment computed with 

the current computational model in Cartesian coordinates [32] and the 

experimental wind tunnel data [6] are shown in Figure 6.15. The 

simulated undisturbed upstream flow in the wind tunnel corresponds to 
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atmospheric boundary flow over ground with Z. = 0.1 m if a model scale 

1 -:'300 is assumed [6]. Since the height of the model in the wind 

tunnel study is 50 mm, at 1 :300 this corresponds to a full-size scale 

body of 15 m. Accordingly, the dimensionless surface roughness Z. is 

0.007. The numerical results shown in Figure 6.15, therefore, are 

computed with Z. = 0.007 uniformly distributed along the wall. 

The numerical solutions obtained by using the coefficients CU, CD, CR 

and CE given in Reference [32] are also shown in Figure 6.15. The 

results are relatively insensitive to the coefficients used. 

Some differences between the numerical results and the 

experimental data [6] are shown in Figure 6.15. On top of the front 

upper corner of the step, the velocity speed-up ratio, V(z)/V,(z), is 

slightly over-predicted. In other regions of the flow field computed, 

the numerical results are under-predicted in the region near the 

ground. These observations suggest that the surface roughness scale, 

"z 0' 
used in current computation is higher than the experimental value, 

as stated in Section 6.3. 

Figure 6.16 shows a comparison between the computed value of 

&/Va, and the experimental data for a,,/Vc, [6], where Vo3 is the upwind 

velocity at a height 10 H above the ground and 0 
V1 

is the r.m.s. value 

of the turbulence fluctuation of the horizontal velocity components. 

Over level homogeneous terrains, many micrometeorological experiments 

suggest that 

aV 2 
= 0.5 cJvl 

OV 3 
= 0.8 ov 

1 
(6.1) 
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where o 
v2 

and CT 
v3 

are the r.m.s. values of the turbulence fluctuations 

of the vertical and the lateral components, respectively [9]. By the 

definition of K, 

K ; =-- 2+U2+U2 
Ov1 v2 v3 I 

(6.2) 

and the relationships of Equation 6.1, the following approximate result 

is obtained: 

0,,/Ac = 1.03 (6.3) 

for atmospheric flow over uniform terrain at a neutral stability con- 

dition. However, in actual fact the ratio CJ 
vl 

/a is affected by the 

terrain over which the flow passes [40]. As flow passes over obstacles, 

the ratio av2/ov 
1 

increases slightly, while the ratio ov3/dv 
1 

remains 

approximately equal to upstream value [7,9]. Limited data [9] shows 

that on top of a hill, the ratio av2/~ 
vl 

increases from its upstream 

value 0.5 to a local value of 0.8. This reduces the value of the ratio 

a,,,/& from 1.03, Equation 6.3, to 0.93. Since the value of the ratio 

a,,/& depends on the terrain over which the flow passes, the comparison 

shown in Figure 6.16 should be made qualitatively rather than quanti- 

tatively. Figure 6.16 shows that the present results of A/V, agree 

well qualitatively with the experimental data of a,,/V, [6]. The 

analytical results of &/VW obtained by using the coefficients given 

in Reference [32] result in an over-prediction of &'Vo3 of approximately 

five times the present results, in the region next to the wall. It 

is concluded that the coefficients developed in the present study result 
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in an equivalent prediction of the mean wind field and a better pre- 

diction of the kinetic energy field, as compared with those developed 

in Reference [32]. 

Results from the present numerical model applied to a block 

geometry, when compared with experimental wind tunnel data and full- 

scale field data, show excel1en.t agreement in both the mean velocity 

field and the turbulence kinetic energy field [11,26]. It is noteworthy 

that the upstream turbulence level causes significant effect on the 

flow field computed. An increase in upwind turbulence reduces the dis- 

tance, xr, between the block and the flow reattachment point, Figure 

6.17. Reference [41] reports that reattachment of flow over a solid 

fence occurs at a distance 10 H to 15 H measured downstream from the 

fence. This is accurately predicted by the present numerical model in 

the range of V,/VH = 0.053 to 0.015, Figure 6.17. 

Figure 6.18 shows typical V/V0 isotachs computed and measured 

for a solid fence. Excellent agreement between the computational 

results and the experimental data [41] is observed. In the recirculat- 

ing flow region, the present results show a region of negative velocity, 

as one would expect. This region of negative velocity, however, is not 

shown in the experimental data. The measurement of velocity using hot 

wire [41] in the region close to the fence, where the velocity is low 

speed and highly fluctuating, can cause error in the measurements. 

Bradley [9] measured wind speed profiles on the top of a hill. 

The terrain surrounding the hill is roughly a uniform surface with 

z" 0 = 0.005. The hill, however, is covered by a forest. The shape of 

Bradley's hill, along with the shapes of other surface geometries for 
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which either empirical or analytical data are available for comparison, 

is shown in Figure 6.19. Measured and computed vertical profiles of 

horizontal velocity on the top of the respective hill geometries shown 

in Figure 6.19 are presented in Figure 6.20. The velocity scale VR 

used in Figure 6.20 is the upwind velocity at zR = 0.2 H, where zR is 

a reference height. 

Great differences between the various analytical models is 

clearly seen from Figure 6.20. These differences are due to the 

different assumptions used in the analyses. The length scale used 

in References [19] and [39] has been prescribed by the mixing-length 

hypothesis. This approach can cause significant differences in the 

analytical results (see Section 6.1). The boundary layer approxima- 

tion of Frost, et al. [19] and the different closure form used by 

Taylor [39] for the shear stress terms of the governing momentum 

equations can also create disagreement between the analytical models. 

The data of Bradley [9] show very low values of V/V, in the 

region z < z R' This is believed to be caused by the existence of a 

forest on the hill. The existence of the forest increases the effec- 

tive surface roughness and therefore decreases the velocity in the 

region next to the ground (see Section 6.3). An effort was carried 

out to simulate the effect of a forest on the flow field by increas- 

ing the surface roughness scale, zb, on the semiellipse. The value 

0.1 Was assigned t0 zb , while the ground surface roughness, Zo, 

remained at 0.005. No converged numerical solutions are obtained 

due to the large magnitude of the abrupt change in surface roughness. 

The numerical solutions for Zb = 0.01 and to = 0.005 show only slight 
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reduction of the ratio V/V, in the region z < z - R' An accurate method 

of simulation of the effect of a forest has not yet been developed. 

Figure 6.20 shows that the analytical results of Frost, et al. 

[19] agree well with the data of Bradley [9]. It is noteworthy, how- 

ever, that the analytical results are obtained by a two-dimensional 

analysis with uniform Z. [19], while the experimental data are obtained 

for flow over a hill with a forest on its top [9]. The wind tunnel data 

for a three-dimensional Gaussian hill [7] are also consistent with the 

computed results of Frost, et al. [19] in the region z 2 zR, Figure 

6.20. As shown in Figure 6.20, the present computed results agree 

excellently with the wind tunnel data [7] of flow over two-dimensional 

obstacles with geometries similar to a semiellipse. In the region 

z<z _ R, Taylor's predictions [39] agree with the present computed 

results and then shift to agree with the computed results of Frost, 

et al. [19] if z 2 zR, Figure 6.20. However, the value of Z. used by 

Taylor [39] is 0.0005 rather than 0.005 used by Frost, et al. [19] and 

by the present computation. 

Although the limited data compared in Figure 6.20 are obtained 

from flow over obstacles with similar geometries, one cannot form any 

conclusions from the agreement (or disagreement) between the analytical 

results and the experimental results until more experimental data are 

available for comparison. This is due to the fact that the upstream data 

were not available for Bradley [9] and the flow field can be significantly 

affected by the upstream turbulence level, the magnitude of surface 

roughness and its distribution, -and the geometry of the obstacle. This 

is demonstrated by the present study. 
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Figure 6.21 indicates that the distribution of turbulence 

kinetic energy is significantly affected by the aspect ratio of the 

obstacle, as well as by the magnitude of the surface roughness scale. 

As mentioned earlier, the length scale, L, on top of the obstacle is 

under-predicted by a prescribed mixing length hypothesis. An under- 

prediction of L causes an under-prediction of the production rate of 

turbulence kinetic energy, K, and an over-prediction of the dissipation 

rate of K, Equation 3.9. Therefore, the results of Taylor [39] show 

relatively lower turbulence kinetic energy levels than the present 

computed results. However, his results agree well with the data of 

Bradley [9]. The two-dimensional model of Taylor [39] developed for 

flow over gentle terrain results in good agreement with the K/K0 profile 

for a set of three-dimensional, full-scale field data for a high hill, 

Figure 6.20, and in disagreement with the V/V, profile, Figure 6.19. 

Therefore, more data are needed to verify the accuracy of Taylor's 

model when it is applied to the cases of flow over high hills. 

The present results show maximum values of turbulence kinetic 

energy occur at Z = 0.3. Taylor's method [39], however, shows a 

constant turbulence layer due to his assumption of a constant shear 

layer in the wall region. His results [39] shown in Figure 6.20 were 

obtained for the case Z. = 0.0005. Since "K. = (i,/CW)2 is used in the 

present study, "K. = 0.016 if CP = 0.416 and ?, = 0.053, which corresponds 

to the case Z. = 0.0005. The present computed results show that the 

value of "K can be as large as ten times its undisturbed value, io, 

if Z. = 0.0005 and D/H = 2.0, Figure 6.21. Therefore, the maximum 

value of k is 0.16 if R, = 0.016. The square root of "K = 0.16 results 
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in the value of the ratio A/V, = 0.4. Some evidence [5,7] exists 

that the value of ovl/VH is approximately 0.4 on top of surface 

obstacles. As discussed earlier, the value of a,,/& is 1.03 for flow 

over uniform, level terrain, Equation 6.3, and is 0.93 in the layer 

directly on top of Bradley's hill [9]. The value of &/VH = 0.4 

obtained in the present computation is reasonable if the value of 

0 /v 
"I H 

= 0.4, which results in the ratio D,,,/& = 1.0. 

6.5 Phenomenon of Flow Separation 

As flows pass over a gradually sloping surface, fluid elements 

close to the surface gradually lose momentum due to surface friction. 

Flow separation occurs when the momentum of the fluid particle cannot 

overcome the adverse pressure gradient caused by the obstruction to the 

flow, i.e., the fluid elements flow in the direction of decreasing pres- 

sure. As contrasted to the gradually sloping surface, an abrupt or 

bluff-shaped obstacle creates a small separation on the front face due to 

the same phenomenon described above, i.e., the interaction of adverse 

pressure gradients and the viscous forces; however, a much larger 

downstream separation emanates from the sharp leading edge due to the 

inability of the flow to negotiate the change of surface configuration 

[l]. For flow over non-bluff bodies, e.g., flow over semiellipses, 

the mechanism of flow separation and reattachment is the same as that 

of flow over gradually sloping surface [l]. The flow parameters 

affecting the phenomenon of flow separation are therefore the scale 

of the viscous forces, the surface friction, and the geometry of the 

obstruction. In addition to these parameters, the magnitude of the 
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uphind turbulence level significantly influences the size of the 

separated flow regions (see Section 6.4). In the present study, 

the above mentioned parameters are scaled by the Reynolds number, 

Re, the surface roughness, Zo, the aspect ratio, D/H, and the 

dimensionless friction velocity, "v*, respectively. The effect of 

these parameters on flow separation is discussed in this section. 

The obstacles considered are a rectangular block and different aspect 

ratio semielliptical cylinders. 

The characteristics of wind around a rectangular block have 

been investigated [11] by using the same numerical model as that used 

in this study. For all the cases studies in Reference [11], the 

presence of a block in the wind field always induces an upstream recir- 

culating flow region and a downstream separation bubble. In general, 

the upstream bubble is small and extends approximately 1 H upstream. 

The size of the downstream separation bubble, however, is significantly 

affected by the upstream turbulence level. In the present model, the 

undisturbed upstream turbulence kinetic energy, k,, is proportional to 

D*12. The increase of ii, causes a smaller downstream bubble. As 

mentioned in Section 6.3, an increase in Z. of the obstacle tends 

to cause greater displacement of the flow approaching and passing 

over it. Therefore, a larger value of Z. induces a larger upstream 

separation bubble for flow over a semiellipse [19]. However, 

the computation of flow over a forward-facing step [32] shows a minimum 

upstream separation bubble at Z. = 0.05. In view of the fact that the 

quantities obtained in numerical computation show an approximate rather 

than an exact location of the flow separation and reattachment points, 
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the effect of Z. on the upstream flow separation should be resolved by 

experimental work. 

Summarily, the flow field upstream of the block is influenced 

by the surface friction, the pressure gradients, the viscous force, and 

the turbulence level of upstream wind. The downstream flow field, how- 

ever, is influenced by the upstream turbulence level and the shape of 

the obstacle. 

The cases of flow over semielliptical configurations studied in 

this effort did not produce flow separation. The molecular viscosity, 

v, is assumed to be much smaller than the eddy viscosity, therefore, 

the influence of the molecular Reynolds number is not felt. For 

D/H = 1.02, Z. = 0.001, the present computed results with Re = lo5 have 

been compared with the case of Re = 00, and only insignificant effects 

on the flow field occur. Assigning conditions Re = 102, however, 

results in downstream flow separation, Figure 6.22. The flow reattach- 

ment distance, xr,, where xr is measured from the lower corner of the 

ellipse (Figure 6.22) is approximately 2 H, which is much smaller than 

that for laminar flow over a circular cylinder (xr = 10 H has been 

reported [42]). In view of the fact that the turbulence model described 

in Section 3.0 is developed under the assumption of high Reynolds num- 

bers, reliability of the results obtained by applying the model to low 

Re flows is uncertain. However, assuming an eddy viscosity of zero and 

solving the system of equations described herein, a reattachment distance, 

xr, which extends to 7 H for D/H = 1.0001, is found. This value may 

still be an under-prediction. A coarse grid size used in the computa- 

tion procedure can result in under-prediction of the downstream separa- 

tion bubble of a circular cylinder [42]. 
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Figure 6.23 shows the G contours corresponding to the case 

shown in Figure 6.22. The distribution of the G is very similar to 

the results of a laminar flow calculation for flow over a circular 

cylinder [42]. This implies that the turbulence model developed under 

the assumption of high Reynolds number can be applied to low Reynolds 

number flows by assuming a very small value for turbulence kinetic 

energy, which leads to a small value of vt. It is noteworthy, however, 

that K should not be zero; otherwise a singularity occurs at the term 

eL of Equation 3.14. 

For laminar flow, increasing Re increases the size of the flow 

separation bubble [42]. An increase in Re can be generated by increas- 

ing the upstream velocity and therefore increasing the momentum of the 

approaching flow. This increased inertia force convects the separation 

bubble downstream. In the case of turbulent flow, an increase in VH 

causes a decrease in V,/VH, if V, is kept constant. The downstream 

separation bubble is therefore increased, Figure 6.17. The mechanism 

governing the size of the flow separation bubble, however, is different 

in the laminar flow case and the turbulent flow case. In low Re flows, 

the size of the reversed flow region is controlled by viscous diffusion 

of momentum rather than by turbulent diffusion. The shear layer shed 

behind the body spreads more rapidly and reattaches sooner in turbulent 

flow. 
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7.0 CONCLUSIONS 

The values of the constant coefficients developed in the present 

study for use in the K-L turbulence model are applied to the solution of 

the problems of atmospheric flow over two-dimensional obstacles. Good 

agreement between the numerically computed results and the experimental 

results from both atmospheric boundary layer wind tunnels and full-scale 

field tests are obtained. 

The results of studying the influence of the flow parameters 

on the flow field for the range of parameters investigated in this 

study lead to the following conclusions: 

1. The character of the flow field is significantly affected 

by the surface roughness length scale, zo/H; the upwind 

turbulence level, V,/VH; and the geometries of the obstacles. 

2. The drag force exerted on the flow field by the solid sur- 

face is larger for increased zo/H and thus more effectively 

retards the flow near the surface, causing the streamlines 

to be further displaced from the obstacle. 

3. The turbulence intensity of the fluid motion is increased in 

the wall region for increased zo/H. In turn, the momentum 

of the fluid elements in the wall region is reduced due to 

the energy being extracted from the mean flow field and 

converted to turbulence energy. 

4. The thickness of the layer of atmosphere next to the ground 

where the flow is significantly affected by the local surface 
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roughness depends on the distribution of the roughness and 

its magnitude. This thickness is generally less than one 

characteristic body height. 

5. Flow separation generally commences from the upstream corner 

of the bluff body. For flow over a convex surface, the flow 

separates at a position downstream of the crest of the 

obstacle if Re is low. For high Re, the flow is not likely 

to separate, particularly if the upstream turbulence is high. 

6. An increase in upstream turbulence level reduces the size 

of the downstream flow separation bubble. This effect is 

attributed to enhanced turbulent mixing which transports 

momentum much more quickly from the upper layer to the 

lower layer. 

The results of the present study indicate that the turbulent 

flow field upstream of an obstacle is mainly affected by the surface 

friction and the pressure gradient. Downstream of the obstacle, however, 

the flow is mainly affected by the upstream turbulence level. Addition- 

ally, the mean velocity field and the turbulence field are significantly 

affected by the geometry of the obstacle. For low Reynolds number 

flows, the size of the downstream reversed flow region is controlled 

by viscous diffusion of momentum rather than by turbulent diffusion. 

Therefore, the shear layer shed behind the obstacle spreads more 

rapidly in turbulent flow, resulting in a smaller downstream separation 

bubble. 
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EXPRESSION OF S, IN ORTHOGONAL CURVILINEAR 

COORDINATE SYSTEMS 

ider an orthogonal curvil inear system (u,,u,) rotated an 

respect to the Cartesian system (x,z) as shown in 

Figure A.l(a), the unit vectors zx and sz in (x,z) system can be 

expressed as: 

angle e with 

APPENDIX 

z 
X 

= cos e S 1 - sin 0 Z 2 

z 
Z 

= sin 0 s 1 + CO.' e z 2 (A. 1) 

where z, and z7 are the unit vectors in the (u,,u,) system. 

The distances between two nearby points in the (u1,u2) system, 

i.e., da and dn in Figure A.l(b), can be written as 

da = h,du, 

dn = h2du2 (A-2) 

where hl and h2 are metric coefficients in (u,,u,) system. The deriva- 

tive of a quantity 0 with respect to u1 can be expressed as: 

= hl cos e 2 + sin 8 $$ I (A-3) 

Similarly 
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(a) Two-dimensional orthogonal curvilinear coordinate 
systems 

(b) A small surface element in (u,,u,) system 

Figure A.1 Schematic diagram of the relationship between general 
orthogonal curvilinear coordinate system and Cartesian 
coordinate system 
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$$, = h2[-sin 0 2 + cos 8 $-$I 

1 

(A.41 

Multiplying Equations A.3 and A.4 with h2 cos 8 and hl sin 8, respec- 

tively, and then subtracting, one obtains 

cos 8 a+ a+ sin 8 a+ 
ax-pp--p hl au1 h2 au2 

(A.51 

In turn, multiply Equations A.3 and A.4 with h2 sin e and h, cos 8, 

respectively, and adding gives 

* - sin 8 w + cos e a@ ___ __ 
az - hl au1 h2 au2 

(A.6) 

Substituting Equations A.l, A.5 and A.6 ,into Equation 4.31, the expres- 

sion for V and V in the (u,,u,) system becomes: 

(A.71 

The velocity vector 3 appearing in Equation 4.30 can be written 

as: 

3 = v,$ + v2z2 (A.8) 

Expanding Equation 4.30 with the aid of Equations A.l, A.7 and A.8 
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S 
hlh2 9 = 

a, aVx a, avx 
e-- 

au2 au1 +Kiysq 

au, aVz auZ avz --- 
au2 au1 +%ipq 

where 

(A.91 

cos 8 a'e sin 8 al'e 
uX 

=--m-- 
hl au, h2 au2 

pZ 
sin e aUe + cos 8 a'e =-- ___- 

hl au, h2 au2 

Vx = V, cos 8 - V2 sin 8 

Vz = V, sin 8 + V2 cos 8 (A.10) 

Substituting Equation A.10 into A.9 and arranging gives Equation 4.32 in 

the text: 

s 
h,h2 + = 

aV1 au, aV, au1 aV2 au2 
+Yjqq-Tiy3iy 

aV2 au2 
--- 

au, au2 +Tiiq3iy 

[ 

ae aV2 ae aV2 

! I 

ae aV1 ae aV1 
+!q~yjyqjq +p25pyzp5 

I 

[ 

ae aU2 ae aU2 +v ----- 
1 au2 au1 au, au2 

I 

I 

ae ap1 ae aUl 
+V2"U15yzpy 

I 
(A.ll) 

where 
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